

Set Theory Revisited

Outline for Today

- ***Proofs on Sets***
 - Making our intuitions rigorous.
- ***Formal Set Definitions***
 - What do our terms mean?
- ***Appendices: Examples***
 - Sample proofs

Recap from Last Time

	If you assume this is true...	To prove that this is true...
$\forall x. A$	Initially, do nothing . Once you find a z through other means, you can state it has property A .	Have the reader pick an arbitrary x . We then prove A is true for that choice of x .
$\exists x. A$	Introduce a variable x into your proof that has property A .	Find an x where A is true. Then prove that A is true for that specific choice of x .
$A \rightarrow B$	Initially, do nothing . Once you know A is true, you can conclude B is also true.	Assume A is true, then prove B is true.
$A \wedge B$	Assume A . Also assume B .	Prove A . Also prove B .
$A \vee B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. <i>(Why does this work?)</i>
$A \leftrightarrow B$	Assume $A \rightarrow B$ and $B \rightarrow A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

New Stuff!

Proving Results from Set Theory

Claim: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Proof (?): Assume A , B , and C are sets where $A \in B$ and $B \in C$.

We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B . Since $B \in C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \in C$, as required. ■

Claim: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$.

We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Go to
PollEv.com/cs103spr25

Claim: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Proof (?): Assume A , B , and C are sets where $A \in B$ and $B \in C$.

We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B . Since $B \in C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \in C$, as required. ■

Claim: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume $A \subseteq B$ and $B \subseteq C$.

We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

This claim is not true! For example...

$$\begin{aligned}\emptyset &\in \{\emptyset\} \\ \{\emptyset\} &\in \{\{\emptyset\}\} \\ \emptyset &\notin \{\{\emptyset\}\}\end{aligned}$$

Lie: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume A , B , and C are sets where $A \in B$ and $B \in C$.

We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B . Since $B \in C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \in C$, as required. ■

Claim: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B .

Since $B \subseteq C$, we know that B is contained in C .

Since $A \subseteq B$ and $B \subseteq C$, we know that A is contained in C .

This means that $A \subseteq C$, as required. ■

This claim is not true! For example...

$$\begin{aligned}\emptyset &\in \{\emptyset\} \\ \{\emptyset\} &\in \{\{\emptyset\}\} \\ \emptyset &\notin \{\{\emptyset\}\}\end{aligned}$$

Lie: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume $A \in B$ and $B \in C$.

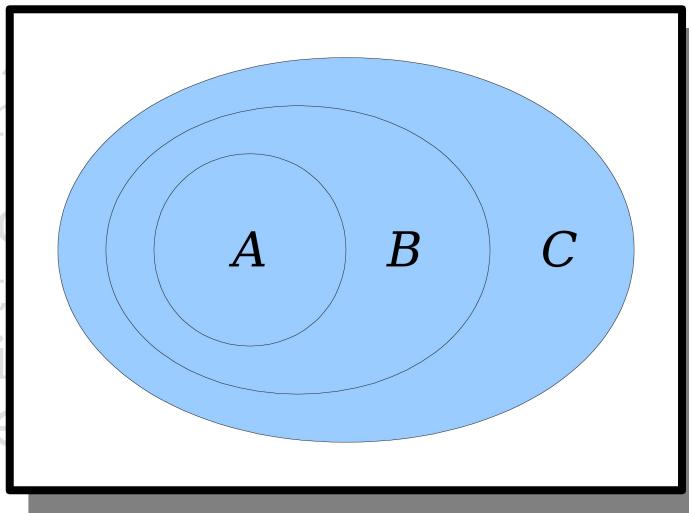
We need to show that $A \in C$.

Since $A \in B$, we know that

know that B is contained in B .

in B and B is contained in C .

This means that $A \in C$.



Claim: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$.

We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we

know that B is contained in C . Therefore, because A is contained

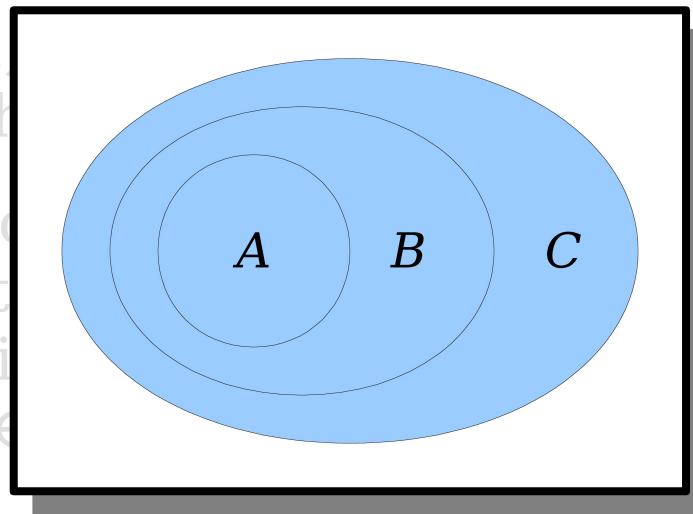
in B and B is contained in C , we know that A is contained in C .

This means that $A \subseteq C$, as required. ■

Bad Proof: Assume A

We need to show that

Since $A \in B$, we know that B is contained in B and B is contained in B . This means that $A \in B$.



There $A \in B$ and $B \in C$.

in B . Since $B \in C$, we
because A is contained
 A is contained is C .

Theorem: If A , B , and C are sets where $A \subseteq B$ & $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$.

We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Lie: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume A , B , and C are sets where $A \in B$ and $B \in C$.

We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B . Since $B \in C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \in C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ & $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$.

We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Lie: If A , B , and C are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume A , B , and C are sets where $A \in B$ and $B \in C$.
We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B . Since $B \in C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \in C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ & $B \subseteq C$, then $A \subseteq C$.

Bad Proof: Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$.
We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

This can't be a good proof;
the same basic argument
proves a false claim!

Claim: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Claim: Let A , B , and C be sets. If $A \varsubsetneq B$ and $A \varsubsetneq C$, then we have $A \varsubsetneq B \cap C$.

Proof (?): Assume $A \varsubsetneq B$ and $A \varsubsetneq C$. We need to show $A \varsubsetneq B \cap C$.

Since $A \varsubsetneq B$, all elements of A are in B and there are other elements of B . Since $A \varsubsetneq C$, all elements of A are also in C and there are other elements of C . Therefore, all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \varsubsetneq B \cap C$. ■

(Reminder: $S \varsubsetneq T$ means $S \subseteq T$ and $S \neq T$.)

Go to
PollEv.com/cs103spr25

Claim: Let A ,
have $A \subseteq B$ and
 $A \subseteq C$. Then
 $A \subseteq B \cap C$.

This claim is not true! For example...

Proof (?): Assume
 $A \subseteq B$ and
 $A \subseteq C$.

Since $A \subseteq B$, all
elements of A are in
both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

$$\{137\} \subseteq \{137, 103\}$$

$$\{137\} \subseteq \{137, 107\}$$

$$\text{But } \{137\} = \{137, 103\} \cap \{137, 107\}$$

Claim: Let A , B , and C be sets. If $A \varsubsetneq B$ and $A \varsubsetneq C$, then we have $A \varsubsetneq B \cap C$.

Proof (?): Assume $A \varsubsetneq B$ and $A \varsubsetneq C$. We need to show $A \varsubsetneq B \cap C$.

Since $A \varsubsetneq B$, all elements of A are in B and there are other elements of B . Since $A \varsubsetneq C$, all elements of A are also in C and there are other elements of C . Therefore, all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \varsubsetneq B \cap C$. ■

(Reminder: $S \varsubsetneq T$ means
 $S \subseteq T$ and $S \neq T$.)

***Claim:** Let A ,
have $A \subseteq B$ and
 $A \subseteq C$. Then
 $A \subseteq B \cap C$.*

This claim is not true! For example...

***Proof (?)**: Assume
 $A \subseteq B$ and
 $A \subseteq C$. Then
 $A \subseteq B \cap C$.*

Since $A \subseteq B$, all
elements of A are in
both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

$$\{137\} \subseteq \{137, 103\}$$

$$\{137\} \subseteq \{137, 107\}$$

$$\text{But } \{137\} = \{137, 103\} \cap \{137, 107\}$$

Lie: Let A , B , and C be sets. If $A \varsubsetneq B$ and $A \varsubsetneq C$, then we have $A \varsubsetneq B \cap C$.

Bad Proof: Assume $A \varsubsetneq B$ and $A \varsubsetneq C$. We need to show $A \varsubsetneq B \cap C$.

Since $A \varsubsetneq B$, all elements of A are in B and there are other elements of B . Since $A \varsubsetneq C$, all elements of A are also in C and there are other elements of C . Therefore, all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \varsubsetneq B \cap C$. ■

*(Reminder: $S \varsubsetneq T$ means
 $S \subseteq T$ and $S \neq T$.)*

Claim: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

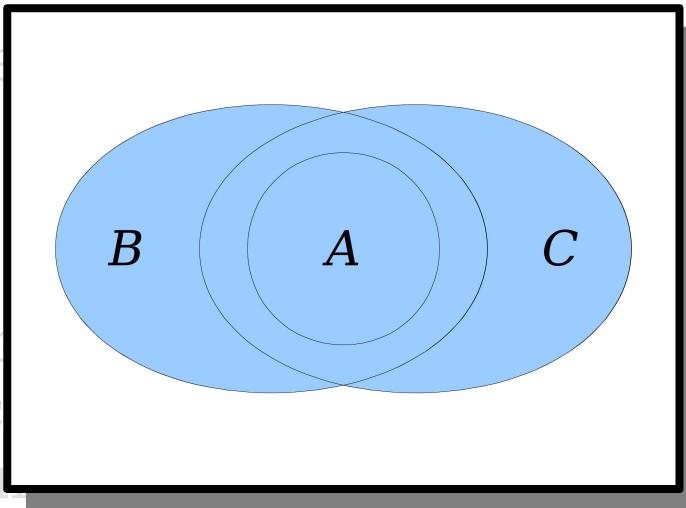
Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Lie: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

(Reminder: $S \subseteq T$ means $S \subseteq T$ and $S \neq T$.)



Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

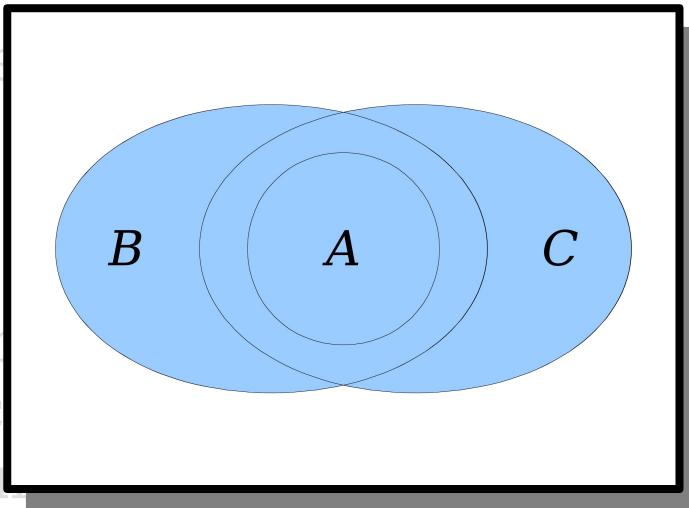
Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Lie: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of B are in C . Therefore, all elements of A are in C . Since there are other elements in B and C that are not in A , all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \subseteq B \cap C$. ■

(Reminder: $S \subsetneq T$ means $S \subseteq T$ and $S \neq T$.)



Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Lie: Let A , B , and C be sets. If $A \subset B$ and $A \subset C$, then we have $A \subset B \cap C$.

Bad Proof: Assume $A \subset B$ and $A \subset C$. We need to show $A \subset B \cap C$.

Since $A \subset B$, all elements of A are in B and there are other elements of B . Since $A \subset C$, all elements of A are also in C and there are other elements of C . Therefore, all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \subset B \cap C$. ■

(Reminder: $S \subset T$ means $S \subseteq T$ and $S \neq T$.)

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Lie: Let A , B , and C be sets. If $A \subset B$ and $A \subset C$, then we have $A \subset B \cap C$.

Bad Proof: Assume $A \subset B$ and $A \subset C$. We need to show $A \subset B \cap C$.

Since $A \subset B$, all elements of A are in B and there are other elements of B . Since $A \subset C$, all elements of A are also in C and there are other elements of C . Therefore, all elements of A are in both B and C , and there are some other elements in B and C . Therefore, we see that $A \subset B \cap C$. ■

(Reminder: $S \subset T$ means $S \subseteq T$ and $S \neq T$.)

What Went Wrong?

- The style of arguments you've just seen are **not** how to prove results on sets.
- As you've seen:
 - The reliance on high-level terms like “contained” is not mathematically precise.
 - A discussion of “all elements” of a set is not how to reason about collections of objects.
- **Question:** How do we write rigorous proofs about sets?

The Importance of Definitions

- Formal definitions underpin mathematical proofs.
- The major issue from the previous proofs is that we haven't defined what our terms mean.
 - How do we define what $A \in B$ means?
 - How do we define what $A \subseteq B$ means?
 - How do we define what $A \cap B$ means?
- We currently have intuitions for these concepts, but not formal definitions.

	Is defined as...	If you <i>assume</i> this is true...	To <i>prove</i> that this is true...
$S \subseteq T$			
$S = T$			
$x \in S \cap T$			
$x \in S \cup T$			
$X \in \acute{\varnothing}(S)$			
$x \in \{ y \mid P(y) \}$			

Proofs on Subsets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Defining Subsets

- Formally speaking, if S and T are sets, we say that $S \subseteq T$ when the following holds:

$$\forall x \in S. x \in T$$

- Now, suppose you're working with a proof where you encounter $S \subseteq T$. Think back to the proof table.
 - To **assume** that $S \subseteq T$, what should you do?
 - To **prove** that $S \subseteq T$, what should you do?

Go to
PollEv.com/cs103spr25

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
$S = T$			
$x \in S \cap T$			
$x \in S \cup T$			
$X \in \acute{\varnothing}(S)$			
$x \in \{ y \mid P(y) \}$			

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof:

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$.

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$.
We need to prove that $A \subseteq C$.

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$.
We need to prove that $A \subseteq C$.

	Is defined as...	If you <i>assume</i> this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, <i>do nothing</i> . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

	Is defined as...	If you <i>assume</i> this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, <i>do nothing</i> . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

$S \subseteq T$

Is defined
as...

$\forall x \in S. x \in T$

If you **assume**
this is true...

Initially, **do nothing**.
Once you find some
 $z \in S$, conclude $z \in T$.

To **prove** that
this is true...

Ask the reader to
pick an $x \in S$.
Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$.

$S \subseteq T$	Is defined as...	If you assume this is true...	To prove that this is true...
	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$.

$S \subseteq T$

Is defined
as...

$\forall x \in S. x \in T$

If you **assume**
this is true...

Initially, **do nothing**.
Once you find some
 $z \in S$, conclude $z \in T$.

To **prove** that
this is true...

Ask the reader to
pick an $x \in S$.
Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required.

	Is defined as...	If you assume this is true...	To <i>prove</i> that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required.

A Correct Proof on Sets

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Bad Proof: Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Bad Proof: Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Bad Proof: Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Theorem: If A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let A , B , and C be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Bad Proof: Assume A , B , and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B . Since $B \subseteq C$, we know that B is contained in C . Therefore, because A is contained in B and B is contained in C , we know that A is contained in C . This means that $A \subseteq C$, as required. ■

Unions and Intersections

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Unions and Intersections

- The statement $x \in S \cap T$ is defined as

$$x \in S \quad \wedge \quad x \in T.$$

- The statement $x \in S \cup T$ is defined as

$$x \in S \quad \vee \quad x \in T.$$

- These are operational definitions: they show how unions and intersections interact with the \in relation rather than saying what the union or intersection of two sets “are.”

	Is defined as...	If you <i>assume</i> this is true...	To <i>prove</i> that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
$S = T$			
$x \in S \cap T$	$x \in S \wedge x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.
$x \in S \cup T$	$x \in S \vee x \in T$	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.	Either prove $x \in S$ or prove $x \in T$.
$X \in \acute{\varnothing}(S)$			
$x \in \{ y \mid P(y) \}$			

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof:

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$x \in S \cap T$	$x \in S \wedge x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required.

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required. ■

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required. ■

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Theorem: Let A , B , and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required. ■

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of A are also in C . Therefore, all elements of A are in both B and C . Therefore, we see that $A \subseteq B \cap C$. ■

Set Equality

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
$S = T$	$S \subseteq T \wedge T \subseteq S$	Assume $S \subseteq T$ and $T \subseteq S$.	Prove $S \subseteq T$. Also prove $T \subseteq S$.
$x \in S \cap T$	$x \in S \wedge x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.
$x \in S \cup T$	$x \in S \vee x \in T$	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.	Either prove $x \in S$ or prove $x \in T$.
$X \in \acute{\varnothing}(S)$			
$x \in \{ y \mid P(y) \}$			

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: See appendix!

Set-Builder Notation

Set-Builder Notation

- Let S be the set defined here:

$$S = \{ n \mid n \in \mathbb{N} \text{ and } n \geq 137 \}$$

- Now imagine you have some quantity x . Based on this...
- ... if you **assume** that $x \in S$, what does that tell you about x ?
- ... if you need to **prove** that $x \in S$, what do you need to prove?

Go to
PollEv.com/cs103spr25

Set-Builder Notation

- Like unions and intersections, we have an operational definition for set-builder notation:

**Let $S = \{ y \mid P(y) \}$.
Then $x \in S$ when $P(x)$ is true.**

- So, for example:
 - $x \in \{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}$ means $x \in \mathbb{N}$ and x is even.
 - $x \in \{ n \mid \exists k \in \mathbb{N}. n = 2k + 1 \}$ means that there is a $k \in \mathbb{N}$ where $x = 2k + 1$. (Equivalently, x is an odd natural number)
- **Key Point:** The placeholder variable disappears in all these examples. After all, *it's just a placeholder*.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
$S = T$	$S \subseteq T \wedge T \subseteq S$	Assume $S \subseteq T$ and $T \subseteq S$.	Prove $S \subseteq T$. Also prove $T \subseteq S$.
$x \in S \cap T$	$x \in S \wedge x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.
$x \in S \cup T$	$x \in S \vee x \in T$	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.	Either prove $x \in S$ or prove $x \in T$.
$X \in \acute{\varnothing}(S)$			
$x \in \{ y \mid P(y) \}$	$P(x)$	Assume $P(x)$.	Prove $P(x)$.

Proofs on Set-Builder Notation

Some Useful Notation

- If n is a natural number, we define the set **[n]** as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \wedge k < n \}$$

Some Useful Notation

- If n is a natural number, we define the set **[n]** as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \wedge k < n \}$$

- So, for example:

- $[3] =$

Some Useful Notation

- If n is a natural number, we define the set **[n]** as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \wedge k < n \}$$

- So, for example:
 - $[3] = \{0, 1, 2\}$
 - $[0] =$

Some Useful Notation

- If n is a natural number, we define the set **[n]** as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \wedge k < n \}$$

- So, for example:

- $[3] = \{0, 1, 2\}$

- $[0] = \emptyset$

- $[5] =$

Some Useful Notation

- If n is a natural number, we define the set **[n]** as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \wedge k < n \}$$

- So, for example:

- $[3] = \{0, 1, 2\}$
- $[0] = \emptyset$
- $[5] = \{0, 1, 2, 3, 4\}$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$,
then $[m] \subseteq [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$m \in \mathbb{N}$ $n \in \mathbb{N}$ $m < n$ $[z] = \{ k \mid k \in \mathbb{N} \wedge k < z \}$	$[m] \subseteq [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$m \in \mathbb{N}$ $n \in \mathbb{N}$ $m < n$ $[z] = \{ k \mid k \in \mathbb{N} \wedge k < z \}$	$[m] \subseteq [n]$ $\forall x \in [m]. x \in [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$m \in \mathbb{N}$ $n \in \mathbb{N}$ $m < n$ $[z] = \{ k \mid k \in \mathbb{N} \wedge k < z \}$ $x \in [m]$	$[m] \subseteq [n]$ $\forall x \in [m]. x \in [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$m \in \mathbb{N}$ $n \in \mathbb{N}$ $m < n$ $[z] = \{ k \mid k \in \mathbb{N} \wedge k < z \}$ $x \in [m]$ $x \in \mathbb{N}$ $x < m$	$[m] \subseteq [n]$ $\forall x \in [m]. x \in [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$m \in \mathbb{N}$ $n \in \mathbb{N}$ $m < n$ $[z] = \{ k \mid k \in \mathbb{N} \wedge k < z \}$ $x \in [m]$ $x \in \mathbb{N}$ $x < m$	$[m] \subseteq [n]$ $\forall x \in [m]. x \in [n]$ $x \in \mathbb{N}$ $x < n$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof:

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$.
We need to show that $[m] \subseteq [n]$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$. Then, because $x < m$ and $m < n$, we know that $x < n$.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$. Then, because $x < m$ and $m < n$, we know that $x < n$. Collectively this means that $x \in \mathbb{N}$ and $x < n$, so $x \in [n]$, as required.

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$. Then, because $x < m$ and $m < n$, we know that $x < n$. Collectively this means that $x \in \mathbb{N}$ and $x < n$, so $x \in [n]$, as required. ■

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

Proof: Assume m and n are natural numbers where $m < n$. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.

Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$. Then, because $x < m$ and $m < n$, we know that $x < n$. Collectively this means that $x \in \mathbb{N}$ and $x < n$, so $x \in [n]$, as required. ■

Notice that *there is no set-builder notation in this proof*. We were able to avoid it by using the rules for what $x \in \{ y \mid P(y) \}$ say to do.

	Is defined as...	If you assume this is true...	To prove that this is true...
$S \subseteq T$	$\forall x \in S. x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
$S = T$	$S \subseteq T \wedge T \subseteq S$	Assume $S \subseteq T$ and $T \subseteq S$.	Prove $S \subseteq T$. Also prove $T \subseteq S$.
$x \in S \cap T$	$x \in S \wedge x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.
$x \in S \cup T$	$x \in S \vee x \in T$	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.	Either prove $x \in S$ or prove $x \in T$.
$X \in \overset{\circ}{\emptyset}(S)$	$X \subseteq S$.	Assume $X \subseteq S$.	Prove $X \subseteq S$.
$x \in \{ y \mid P(y) \}$	$P(x)$	Assume $P(x)$.	Prove $P(x)$.

Readings

- ***Read “Guide to Proofs on Discrete Structures.”***
 - There's additional guidance and practice on the assume/prove dichotomy and how it manifests in problem-solving.
- ***Read “Discrete Structures Proofwriting Checklist.”***
 - Keep the items here in mind when writing proofs. We'll use this when grading your problem set.
- ***Read “Guide to Proofs on Sets.”***
 - There's some good worked examples in there to supplement today's lecture, several of which will be relevant for the problem set.

Your Action Items

- ***Read “Guide to Proofs on Discrete Structures.”***
 - There's additional guidance and practice on the assume/prove dichotomy and how it manifests in problem-solving.
- ***Read “Discrete Structures Proofwriting Checklist.”***
 - Keep the items here in mind when writing proofs. We'll use this when grading your problem set.
- ***Read “Guide to Proofs on Sets.”***

Next Time

- ***Graph Theory***
 - A ubiquitous, powerful abstraction with applications throughout computer science.
- ***Vertex Covers***
 - Making sure tourists don't get lost.
- ***Independent Sets***
 - Helping the recovery of the California Condor.

Appendix: More Sample Set Proofs

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$A \subseteq C$	$A \cup B \subseteq C \cup D$
$\forall z \in A. z \in C$	
$B \subseteq D$	
$\forall z \in B. z \in D$	

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$A \subseteq C$	$A \cup B \subseteq C \cup D$
$\forall z \in A. z \in C$	$\forall x \in A \cup B. x \in C \cup D$
$B \subseteq D$	
$\forall z \in B. z \in D$	

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$A \subseteq C$	$A \cup B \subseteq C \cup D$
$\forall z \in A. z \in C$	$\forall x \in A \cup B. x \in C \cup D$
$B \subseteq D$	
$\forall z \in B. z \in D$	
$x \in A \cup B$	

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$A \subseteq C$	$A \cup B \subseteq C \cup D$
$\forall z \in A. z \in C$	$\forall x \in A \cup B. x \in C \cup D$
$B \subseteq D$	$x \in C \text{ or } x \in D$
$\forall z \in B. z \in D$	
$x \in A \cup B$	

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$A \subseteq C$	$A \cup B \subseteq C \cup D$
$\forall z \in A. z \in C$	$\forall x \in A \cup B. x \in C \cup D$
$B \subseteq D$	$x \in C \text{ or } x \in D$
$\forall z \in B. z \in D$	
$x \in A \cup B$	
<i>Case 1: $x \in A$</i>	
<i>Case 2: $x \in B$</i>	

Theorem: Let A , B , C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Theorem: Let A , B , C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof:

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Theorem: Let A , B , C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$.

Case 2: $x \in B$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

Case 2: $x \in B$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

Case 2: $x \in B$. Then because $B \subseteq D$ and $x \in B$ we have $x \in D$, so $x \in C \cup D$.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

Case 2: $x \in B$. Then because $B \subseteq D$ and $x \in B$ we have $x \in D$, so $x \in C \cup D$.

In either case, we see that $x \in C \cup D$, as required.

Theorem: Let A, B, C , and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

Case 2: $x \in B$. Then because $B \subseteq D$ and $x \in B$ we have $x \in D$, so $x \in C \cup D$.

In either case, we see that $x \in C \cup D$, as required. ■

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof:

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$.

Case 2: $x \in B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Since $x \in A$, we know that $x \in A \cup B$.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Since $x \in A$, we know that $x \in A \cup B$. And since $x \in A \cup B$ and $A \cup B = B$, we see that $x \in B$, as required.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(\Rightarrow) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Since $x \in A$, we know that $x \in A \cup B$. And since $x \in A \cup B$ and $A \cup B = B$, we see that $x \in B$, as required. ■

Theorem: Let A and B be sets. Then if $\mathcal{O}(A) = \mathcal{O}(B)$, then $A = B$.

Theorem: Let A and B be sets. Then if $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$	$A = B$
$\acute{\mathcal{O}}(A) \subseteq \acute{\mathcal{O}}(B)$	
$\forall Z \in \acute{\mathcal{O}}(A). Z \in \acute{\mathcal{O}}(B)$	
$\acute{\mathcal{O}}(B) \subseteq \acute{\mathcal{O}}(A)$	
$\forall Z \in \acute{\mathcal{O}}(B). Z \in \acute{\mathcal{O}}(A)$	

Theorem: Let A and B be sets. Then if $\mathcal{P}(A) = \mathcal{P}(B)$, then $A = B$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$\mathcal{P}(A) = \mathcal{P}(B)$	$A = B$
$\mathcal{P}(A) \subseteq \mathcal{P}(B)$	$A \subseteq B$
$\forall Z \in \mathcal{P}(A). Z \in \mathcal{P}(B)$	
$\mathcal{P}(B) \subseteq \mathcal{P}(A)$	$B \subseteq A$
$\forall Z \in \mathcal{P}(B). Z \in \mathcal{P}(A)$	

Theorem: Let A and B be sets. Then if $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$	$A = B$
$\acute{\mathcal{O}}(A) \subseteq \acute{\mathcal{O}}(B)$	$A \subseteq B$
$\forall Z \in \acute{\mathcal{O}}(A). Z \in \acute{\mathcal{O}}(B)$	$\forall x \in A. x \in B.$
$\acute{\mathcal{O}}(B) \subseteq \acute{\mathcal{O}}(A)$	$B \subseteq A$
$\forall Z \in \acute{\mathcal{O}}(B). Z \in \acute{\mathcal{O}}(A)$	$\forall z \in B. z \in A.$

Theorem: Let A and B be sets. Then if $\mathcal{P}(A) = \mathcal{P}(B)$, then $A = B$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$\mathcal{P}(A) = \mathcal{P}(B)$	$A = B$
$\mathcal{P}(A) \subseteq \mathcal{P}(B)$	$A \subseteq B$
$\forall Z \in \mathcal{P}(A). Z \in \mathcal{P}(B)$	$\forall x \in A. x \in B.$
$\mathcal{P}(B) \subseteq \mathcal{P}(A)$	$B \subseteq A$
$\forall Z \in \mathcal{P}(B). Z \in \mathcal{P}(A)$	$\forall z \in B. z \in A.$
$x \in A$	
$\{x\} \subseteq A$	
$\{x\} \in \mathcal{P}(A)$	

Theorem: Let A and B be sets. Then if $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

<i>What I'm Assuming</i>	<i>What I Need to Show</i>
$\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$	$A = B$
$\acute{\mathcal{O}}(A) \subseteq \acute{\mathcal{O}}(B)$	$A \subseteq B$
$\forall Z \in \acute{\mathcal{O}}(A). Z \in \acute{\mathcal{O}}(B)$	$\forall x \in A. x \in B.$
$\acute{\mathcal{O}}(B) \subseteq \acute{\mathcal{O}}(A)$	$B \subseteq A$
$\forall Z \in \acute{\mathcal{O}}(B). Z \in \acute{\mathcal{O}}(A)$	$\forall z \in B. z \in A.$
$x \in A$	$x \in B$
$\{x\} \subseteq A$	$\{x\} \subseteq B$
$\{x\} \in \acute{\mathcal{O}}(A)$	$\{x\} \in \acute{\mathcal{O}}(B)$

Theorem: Let A and B be sets. If $\mathcal{P}(A) = \mathcal{P}(B)$, then $A = B$.

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof:

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof: Assume $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$.

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof: Assume $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$.

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof: Assume $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof: Assume $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$.

Theorem: Let A and B be sets. If $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$, then $A = B$.

Proof: Assume $\acute{\mathcal{O}}(A) = \acute{\mathcal{O}}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$.

Theorem: Let A and B be sets. If $\mathcal{P}(A) = \mathcal{P}(B)$, then $A = B$.

Proof: Assume $\mathcal{P}(A) = \mathcal{P}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$. This means that $\{x\} \in \mathcal{P}(A)$, and since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ we know $\{x\} \in \mathcal{P}(B)$.

Theorem: Let A and B be sets. If $\mathcal{P}(A) = \mathcal{P}(B)$, then $A = B$.

Proof: Assume $\mathcal{P}(A) = \mathcal{P}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$. This means that $\{x\} \in \mathcal{P}(A)$, and since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ we know $\{x\} \in \mathcal{P}(B)$. Thus we see that $\{x\} \subseteq B$, which in turn means that $x \in B$, as required.

Theorem: Let A and B be sets. If $\mathcal{O}(A) = \mathcal{O}(B)$, then $A = B$.

Proof: Assume $\mathcal{O}(A) = \mathcal{O}(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$. This means that $\{x\} \in \mathcal{O}(A)$, and since $\mathcal{O}(A) \subseteq \mathcal{O}(B)$ we know $\{x\} \in \mathcal{O}(B)$. Thus we see that $\{x\} \subseteq B$, which in turn means that $x \in B$, as required. ■